

PPR (Phase Power Regulator) is a device designed for a power control in active and active-inductive loads: heaters, light bulbs, commutator motors.

Technical Parameters

Parameter	Value
Rated Power Supply Voltage, V	220±10%
Power Control Limit, % of rated	097
Max. Load Current, A	7
Max. Voltage between Metallic Package Header and Terminals, V	1500
Max. Operating Package Temperature, °C	+ 85
Min. Operating Package Temperature, °C	- 45
Max. Load Power, W	1500
Min. Load Power, W	60
Max. Voltage Amplitude between Leads 1 and 2, V, not more than	400
Voltage Drop between Leads 1 and 2 at Rated Current, V, not more than	2
Leakage Current in Off-condition, mA	2
Operability at Momentary Load Current, sec	
- at 15 A	6
- at 70 A	0,02

External and Mounting Dimensions

7,5±0,5 3 Bывода 7,5±0,5 3 Bывода

Connection Diagram

- a) for active load
- b) for inductive load (of a commutator motor)

Operation Application Notes.

It is recommended:

- 1. to connect the load to the 2nd or 1st PPR lead.
- 2. to use the heat sink compound KΠT-8 or its counterpart for lowering the heat resistance while PPR mounting onto the radiator. The radiator option depends on the heat-exchange conditions, on the load current and on the peak values of the operating package temperature.
- 3. It is possible to use the PPR without a radiator when the load current is not more than 2A. It is recommended:
- 4. to keep resistance of the outer control resistor within the limits of R1 = (700-1200) kOhm/ 0.25W.
- 5. to connect the RC-daisy chain parallel to the PPR leads 1-2 in order to maintain steady PPR operation with an inductive load of ($\cos \phi < 0.8$). The bogey values of the RC-daisy chain components are 100nF (400V) and 100 Ohm (2W). It is also recommended to connect parallel to the mentioned daisy chain a voltage suppressor (a voltage-variable resistor or limited diode) with protection voltage of 380-420V.
- 6. owing to the lead configuration to use the connection type Faston 2,8 x 0,5 or soldering for the lead connecting.
- 7.The lead soldering has to be done by the soldering alloy Π OC-61, the soldering temperature should be 260±5 °C, the soldering duration should be not longer than 6 sec. and the spacing between the tin-plating point and the package has (depending on a lead length) to be not less than 3mm.
- 8. The connection of the capacitance load to the PPR is not allowed.
- 9. The lead bending is also not allowed.